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This paper considers the rotatory motion of a cylinder of finite height,filled with a vis* 
cous incompressible fluid, and subjected to an elastic moment, the cylinder being initially 

at rest in a position obtained from the equilibrium position by rotation through a small 
angle . The solution of the problem is constructed in the form of a Laplace-Mellin 
integral. The vibration spectrum of the system is studied and a spectral expansion for 
the solution obtained, the latter yielding a description of the nature of the cylinder’s 
motion for various values of the parameters involved. 

This problem was solved earlier under the assumption that the oscillations decay har- 
monically, which assumption is valid in a certain time interval when the ratio of the 

moments caused by the viscous friction forces to the maximal elastic moment is suffici- 
ently small fl and 21. A general investigation of the characteristic equation for the oscil- 
lations was not carried out, and the problem in the large (with account taken of the lni- 
tial conditions) was not posed. The present paper fills this gap. 

It is established that for any positive values of the parameters the rigid cylinder passes 
through the equilibrium position. Depending on the values of the parameters, two things 

can happen : (1) the *cylinder passes through the equilibrium position an infinite number 
of times, or (2) the cylinder passes through the equilibrium position an odd number of 
times and then approaches the equilibrium position as time approaches infinity, from the 
side opposite that of the initial position. 
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The investigation of analogous problems for a sphere or an infinite cylinder filled with 

a viscous fluid is significantly simpler since, unlike the problem for a cylinder of finite 
height, the fluid motion will depend on one spatial coordinate only [33. The quanlitative 
results of such an investigation do not differ from those obtained for the finite cylinder. 
Apparently, small torsional oscillations of an arbitrary elastically constrained rigid sur- 

face of revolution containing viscous fluid or immersed in such a fluid follow the essen- 
tial pattern of such oscillations in the simplest concrete problems, where the fluid moves 
as a family of quasirigid surfaces. 

1, Formulation of the problsm, Integral reprsrentatlon and 
differentlrl propertiss of the solution. A rigid right circular cylindrical 

surface of radius R,,height Z.H, and moment of inertia K,,filled with a homogeneous 
incompressible fluid of viscosity q, and density pL* is axisymmetrically attached to an 
elastic filament of torsional rigidity &$, =E, /~a** (Is,, is rhe frequency of the free 

undamped harmonic oscillations of the cylinder without fluid). At the initial moment 
of time 2, = 0 the system is at rest and the cylinder is twisted at a small angle&rela- 

tive to the equilibrium position. The parameters A@, R,, H,, K,, M,, q*, r_‘* 
are positive. The basic quantity under study is the angular velocity oo+ (t*) of the solid 
cylinder for t, > 0. 

We pass to dimensionless quantities 

On a meridianal half-plane we introduce dime~ionle~ rectangular coordinates r, Y 
such that the portion inside the cylindrical surface considered is defined by the inequa- 

lities 0 < r <i, - H ( y < Ii. The angular velocity of the fluid about the axis 
r = 0 , relative to kar , is denoted by o (t, rr r~). 

As solution of the problem. we seek a function o (t, r, y) defined in fI (t > 0, 
0 < r < i, I y I< H) and satispg the following conditions : 

1) the function o (t, r, Y) is continuous in the region D and vanishes for t = 0, 
O<r< 1, Iyl<ar; 

2) for t > 0 and in D there exist continuous derivatives ml, Ok, my; insideB, 0 
also has continuous derivatives o,,, oyy , and satisfies the equation 

1 
T@i = “f, + r 3% +a,, (1.1) 

3)ineachregion (e<t<to,O<r<i, jYf(H),where e and&are 
arbitrary positive numbers, the following estimates are valid : 

WCC, I or 1 C Cl+* I “, I c w-‘9 

I@lK Gr-3fqiJ<Gfl vf - l!/lF 

where C depend only on t,, and i?,, C4 only on e and t,; 
4) the function o (t, i, y) = o (1, r, --H) = o (t, r, Ii) ES coo (t) for 

t > 0 satisfies the equation 

+ + A0 +{wo(rP + II(‘s %L*dY- 
t) --R 
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The concept of a solution is defined here in such a way that its uniqueness may be 
established by examining the energy integral. Such a definition is more natural physically 
than that based on a constructive procedure involving the Laplace transform. The latter 

leads to the following result : 

(1.3) 

r>maxReLofL)=o 

Y(r, y, 2) = f [$ - g 2 @ rh (b,w) 
,,_) =,,Jo P,) 4,” ch (b,‘f) 

Jl(ar,r) 3 = 

q,(z)=zZ$-lf2Hqz 

b,,=~b~, b= vz, 0<al<02<..., I1(u)=--iJ1(Ui). 

Here Jo (u) and J, (u) are Bessel functions and a,tta positive roots of Jr (u). From 
the asymptotic representation of Bessel functions follow the following facts, essential for 
the investigation of \y (rl y, z) and cp (z) : the quantities 

are bounded between two positive numbers, independently of R and m. 

The second expression for Q, (z) is obtained from the first as a consequence of the 

Ii+ = g (0) = ; 
?a=1 

Clearly the poles of g (z) are simple, negative, and are given by the double sequence 

~“,=-va,2--(2m-,l)‘~; (n=i, 2 ,...; m=i,2,.. .) 

We enumerate the poles in the order of their decrease, denoting coincident values of 
cnm (if such exist) by the same number 

o>-Vvl,‘>51>52>...>6,>6p+l>... 

For 0 < r < i , 1 y I< Ii the function ‘vfr, y, z) is meromorphic in z. Its poles 
are simple and all are contained in the set of poles cP of q)(z). The limit conditions 
for ‘l’when z # &,, p = i ,2,. . . take the form 

Y’(1, y, 2) ?E y’(r,- ;N, z) EZ Y (r, H, z) zz 4 

f?/ldfk O<r<i 
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In the sector S (- rr+e<argr<z- e), where e is a fixed arbitrarily small posi- 

tive number, the following asymptotic relations as I 4 w are easily obtained by estima- 

ting the series by integrals over n : 

tp (2)-z 2’ + 0 (2’9, Y (r, g. 5) -= 0 (z”$ v, = ; 0 (z”), Y’, = ; 0 (3) 

The three latter relations hold uniformly in the rectangle (0 <I < 1. 1 y 1 < H) ; Y 
is continuous in (2 E S, 0 < r ( 1, 1 y 1 < H), and Yrand\P,in.(:ES, O<r<l, 

1 y 1 6 If). Consequently : (1) the function o is continuous in (I > 0, 0 < r 6 1, 1 y 1 < 

< H), (2) the functions w ,and wy are continuous at least in (t > 6,O < r < i, [ y 1 -2 H), 
in which domain 1 w, 1 < C,r+, J wy 1 < Clr+, (3) the functions w, w r, w u vanish in the 

entire cross section (t = 0, 0 < r 6 1, 1 y j 6 tl). It is easy to obtain the estimate 

I wyy I <G V” l~*w-lIlI)+il, tao#o<~<k lul<H 

The quantities C, and Ct here turn out to be finite and constant, if the time interval 

(0. lo), io < CQ, is fixed (since w dies out in time, one may actually choose C, and C, to 

be independent of the time interval). 

For L > 0, 0 6 r < 1, ( IJ 1 < H the function w is infinitely differentiable with respect 

to all variables (and all derivatives vanish at t = 0) ; the differentiation may be taken 

under the integral sign in (1.3) ; and it may be verified immediately that the function 

given by (1.3) satisfies (1.1). 
To investigate the differential properties of w for t > 0 it is convenient to deform 

the contour of integration in (1.3). keeping all roots of g (2) to the left of it, into a new 
contour with the property that for sufficiently large 1: I its points all lie within the sec- 
tors (n - e > arg z > lit’7 + e), (- IT + e < arg z < - 'i,x - e), e > 6. Thus one 

sees that Q is analytic in I for t > 0, 0 6 r 6 I, 1 y 1 Q H , and in the remaining vari- 

ables for r.> 0, 0 < r < I, 1 y I < H. In particular the angular velocity wo it) of the 

cylinder will be analytic for t > 0. All derivatives with respect to l,otn. n = 1, 2, . . ., 
L > 0, 0 < r < i, y < H may be found (after making the indicated contour change) 
by differentiating under the integral sign (in computing w1 it is not necessary to change 

the integration contour). The verification of Eq. (1.2) for t > 0 now proceeds without 

difficulty, thus completing the proof that the integral (1.3) is the solution of the problem. 
According to (1.2) the angular acceleration 00’ (f) is continuous for t > 0 and redu- 

ces to - Aa at t = 0, so that 0, undergoes a jump from the value 0 to the value - As 
as the boundary (corresponding to the rigid cylinder) is approached from the inside at 
f=O. 

2. The spectrum of the problem. We pass to an investigation of the char- 
acteristic equation cp(.c) = (J of the cylinder’s oscillations for arbitrary positive values 
of the parameters 11, q, v. The set of roots of q(~)exhausts the points of the spectrum 
i. e. the values of the complex parameter z for which Eq. (1.1) has bounded solutions of 
the form 0 = Re [e ze f.(r, y, z)] with limit condition of the form (1.2). 

The fundamental result of the present article is formulated as follows. 
Theorem. For any positive values of the parameters ‘I, H, Y the set of roots of 

‘p (2) consist of a countable number of negative numbers 

kP E (&+r* &;p,, 9’ ($J < 0 @ = 1;2,...) 

and pairs of complex conjugate numbers 
h-a= - a + pi, k, = - a - Pi, a > 0, B > 0, q’ (kd =+ 0 

If the parameters H > 0, Y > 0 are fixed and the parameter q, 0 G q < 00 
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increases, then the root k, (TV) proceeds from the initial point z = i, and traverses a con- 
tinuous trajectory in the plane without multiple points, which is a~mptotically tangent 
to the imaginary axis at the limiting point z = 0 as ‘1 -+ 00. 

The proof of this assertion is based on three lemmas. 

Lemma 2.1. On the z plane there exists a sequence of circles rm, m = 1, 2, 

,.... with center at z = 0 and radii increasing to infinity, such that on r, + rt + 

+ ra +... as 2 3 00 
cp(z)=~+o(2) 

Lemma 2.2. In each interval (5n+t, &,) between the poles &, (p = 1, Z,...) 

the function cp (z) has one and only one root k,. On the ray t;t <z < oc the indicated 

function is positive. 

Lemma 2.3. For any fixed H > 0, v > 0 and sufficiently large t) -+ CD, 

in the circle 1 z ] < e (p)_(lim e (q) = 0, lim q (e (q)l’= oo) the function cp (z) 

has exactly two roots &a, k,, where 
ka = f-iii + o(i)1 

The principal difficulty consists in the proof of 2.1 and 2.2. The theorem itself is 
proved very simply from the lemmas. Using Lemma 2.1 with account taken of the argu- 
ment principle, one may choose a contour numbermasuch that for all m > m, the dif- 

ference between the number of roots and poles of cp (21 inside rr is equal to two ; hence 

by Lemma 2.2 the function v (z} has two imaginary roots k,, k, besides the negative 
roots, and has no others. The asymptotic behavior of the root k,for fixed positive H, v 
and ?I -+ 0~ is described in Lemma 2.3. The continuity of the trajectory k, (q), r) E 
~10, =l,k,(O) = i, k,(-v) = 0, is obvious. The absence of multiple points on rt 
follows from the possibility of expressing tl uniquely in terms of k,p 

The condition Rek@ < 0, physically evident, may be formally justified, for example, 
as follows. In (1.3) we separate out the sum of those residues of the integrand which cor- 

responds to ko, g : 0 (1. r, y) = L&e*’ cw 8 f 8) + x (C r, y) 

6=arg 
%‘((I. y. kd 

9’ (kQ) 

B 
0 

1= - 2% I ‘P (r. Y. kQ) 1 

1 
x (k *t Yl= s 

_AI I@@Q)t 

2 2’ dt 
9 

The contour Q is formed from two rays 

argz=7c+t. w>IzI>O; argz=rr -c, 06lZl<a, 

(0 < e < d2, e < n ---ah, O<argko<n) 

The functions r& and r& approach zero as i --, 00 uniformly in rt 1. and the function 

‘4 (r, y. ke) depends on the variables r, y since it satisfies the equation 

yr, + p Y, -!- Y,, -+o 

and takes on the value one on the surface of the rigid cylinder. Therefore the condition 
Reko >O contradicts the following energy equality which follows from the formulation 
of the problem and which is true for all i >@r I 

~~(t)+2Aopo(r)dr+ *Wdr *+ 

++s"{ 

fH1 
0 

6 3 

r'o' dr dy + 2tl 
sss 

r’ [(co,)’ + (oJ* J dr dy dt = 0 

-Ii0 O--He 
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Proof of Lemma 2.1. We fix arbitrary positive values of the parameters H, Q 

V. We replace the variable z by u = bi. In each interval (~,a,,,+,), m = 1, 2, . - -9 

between positive roots of I,(U) we select a subinterval (fl, such that each of the 

segments (am, BJ, (B,, Bm+A (Bm+ a ,,,+,) will have a 1 gth greater than some positive 
number I, the same for all m. 

For some 6, 0 < 6 < I/,, in each half-plane 

lo, = U b=l,2,...), O<.ag&&n 

we construct disks (eQtrn)}= (1 w,, - (2q - i) nil2 1 < b/ml (q = 1, 2, ..-) 

It is easily verified that the image of the disk (Pq”“‘) under the transformation 

rO, 3 U, I 6% u 1 ( n/2 lies inside the disk 

w’Jrn+= lu-E,I<K&} 1 
e 

n9 
= 3L,2$- ( 4;, pq- if Kw= ygi) <; 

n9 

and that the sum of diameters of the circles {R,‘mj) with centers at Em E (pm, fi’,,,*l) 
satisfies 

Sm<4 L = SUP @m+l- amI (m=l, 2,...) 

We finally choose d such that Sm < Vt 2 - 4bH --I. Then for each (pm, pm+l) the 
sum {Z,) of its subintervals lying outside the disks (Rnp(‘RJ1r has measure mea {Em) > 
> I / 2, so certainly is not empty. 

On circles Pm with center u = 0 intersecting (pm, fl,+,) at the points YmE(Z,J, 
m = i, 2, . * -, the following estimates hold uniformly in m, ym, A’ 

Jr’ (4 I I - <cs, Jl (4 lthtwJ<GIuI 

I9 (=I - 9 I < 1 f cs (I u I2 + t f.4 ;* + I / (4 I). 

For m > 2.1’ + i, the following holds on Pm uniformly in m, Ym and N : 

n=N+l 

We suppose given any sequence of positive numbers e,+ 0, I = I, 2, . . . for each e, 
we define N = N, so that W 

c $<e* 

n-N,+1 

For n ( N,, I = i, 2, . . ., we construct disks 

{T,(‘)) = (lu- b4! I < JLqu 

where 8, < 6 are positive numbers determined so that the set (Z,(1)), which remains 
after removing from ( 2,) those points belonging to the disks { Fwc*J), is nonvoid for 

every m - 1, 2, . . . . Finally we choose the circles P, so that y,,, E (2,“)). Then 
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I / (4 I < c (4 I u I a + cd% I I4 I 4 + G I u I % 
UEP,, I = t, 2, . . ., m = 2Ns + 2, ZV, + 3, . . . 

On the contours r,“, images in the s plane of the circles P,. the following holds for 
any fixed I = f, 2, . . . as L -t Q. : 

19 (4 - sf I = C*% I * I * + 0 ( I2 l *) 
which is equivalent to the assertion of Lemma 2.1, since CO does not depend on s. 

Proof of Lemma 2.2. For s<O 

i < - Vln’, r,,=b,,Hi<O 

on= (en* - ‘**)a 
In-- ttlr* 

=d 
+ an*rn (c_* - zn*)* 

-vln*<Z<o. 06x,,= b,H<c,Iu,H 

Here r,, are chosen so that 

$j r*= 

n=1 

Here for t < 0 and cos t # 0 (by convention we omit the index n) 

0’ (z) ti COST t < (9 + 3) [i + 3 tiein I cos f + 

+ 2& sin* I + ~4 (i + 2 co3 t) I” - 3~’ sin Z COs+l 

If r< --I/<---I, 

~9 + 31’ sin f cos z < 0, f (t) E (1 + 2 co9 t) t - 3 sin t co9 z < 0 

For - x / 2 < t < 0 the function f (t) is also negative, since it increases monotoni- 
cally from - .7 I 2 to zero 

j’ (z) = 2 sin 21 (tg I - 2) > 0 

Therefore for z,, < 0, cos I,, # 0, n = I, 2, . . . 

Using the equation 

ak>O, k = 2, 3, 4, . . . 

we also obtain that for 0 < I, < C, 

Thus, for z < 0, z # &,, p = I, 2, . . ., each of the functions R (2) has a negative 
derivative and I+$ (2) < 0. On the interval (&, 0) the function ‘p (z) decreases monoto- 
nically from + Q) to 1 and, consequently, is positive. 

If s > 0, then 0 (2) > 0, for example, because 

-,+++$=2; ,.+tan* >O 
1 

?I=1 



Small torsional oscillations of a r&Id circular cylinder 1049 

Proof for Lemma 2.3. For ff = const>O, v= cmst>O, q-, 00, x.+0 
H 

lp (z) = cqz’ + 1 + 0 (cqz’), c=2y 

on the circle 1 L I = e (q) the quantity qzs 3 00 as tl3 00, therefore for sufficiently 

large n the function cp (z) has in the disk 1 z I_< e (q) < \%* two and only two roots ko, 

5. Irnb > 0, for which 
#a’ If + 0 (i)l = - 1 

Note. In dimensional quantities. cn = K,’ IX,, where K,’ = ,+yr,R,dH, is the mo- 
ment of inertia of the fluid mass in the cylinder. The obtained asymptotic relation 
ka= vmi [i + o(f)] has a ciear physical sense: for large viscosity n* the cylinder 

with the fluid may undergo oscillations as a single solid body with moment of inertia 

& + K,‘, and for K,’ > K, the period of the oscillations grows to approximately 

VA’,’ f KI times the period of the oscillations of the cylinder without the viscous fluid. 

3. Spectral sxpanrfon of the angular velocity of ths cylinder, 
From Lemma 2.1 it follows that the integral (1.3) for y = 1 may be represented for 

all t > 0 by a series of residues of the integrand at its poles ka, x0, k,, p = 1, ii!,... 

00 (I) = -& 
y+ioC 

s -,yf d; = a(#-~~ cos@t + 6,) + i aflkp’ (34 
Y-i00 p=1 

60 = - w rp’ Fob k,=--z-l-pi (x)o,p>o), k*<O 
03 

v ;f up = -a,eosi)o, ap = 
p=i 

-$-J>o, a,=-&<0 
The angular deflection of the rigid cylinder is found by termwise integration of the 

series (3.1) 
1 (1) = .,lo + (~0~ (T) & I cOe-@l cm3 ($L + fl,) -;- 5 c,e’;p’ (3.2) 
t:; 0 II ‘S p=1 

cp = z<o, c()costig= .l,--- &,, Ico~:~-~o* I~oI>fCpl @=I,&. ..I 
P P&l 

We consider the principal terms in (3.2) as t -. 0~ 

A (1) ==: toe-a’ cos @t +a,) + cxekif 

If - a, > ii,, then the arbitrarily large t, A (t) oscillates between positive and ne- 

gative values. If, however, - a ( k,, then for sufficiently large f, A (r) .< (_) , and 
therefore, being an analytic function, A (t) changes sign on the entire ray t _> 0 a finite, 
and in fact,an odd number of times. The first case is realized, for example, when for 
fixed N, v, the parameter t-l is sufficiently small ; and the second, when the values of 
H, 11~ / v are fixed and the parameter v is small ; or, for example, when H and I_I =IJ/Y 
are fixed and tl is small. 
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